Integrating the Identification and Sightings databases with spatial capture-recapture models to estimate right whale density and movement

Gowan, T.¹, Crum, N.¹

¹Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 100 8th Ave SE, St Petersburg, FL, 33701 USA (tim.gowan@myfwc.com)

Estimates of abundance and an understanding of processes that drive its variation across space and time are critical to assessments of population status and risks. Spatial capture-recapture models combine elements of distance sampling and conventional capture-recapture models to estimate abundance and its variation across space (i.e., density). These models utilize information on the identities of detected individuals (e.g., from the NARWC Identification database) and on the locations of these detections and survey effort (e.g., from the Sightings database). Spatial capture-recapture models overcome limitations of alternative approaches to estimating abundance by relaxing the assumption that all animals on the survey line are detected, by explicitly defining the spatial extent for which abundance is estimated, by permitting the movement of individuals into and out of the survey area, and by formally accounting for heterogeneity in detection probabilities due to differences in the location of individuals relative to the location of survey effort. In addition to estimating abundance, these models can be used to understand the distribution of animals across space, movement patterns, how density varies with environmental covariates, and how population processes (movement, recruitment, survival) drive changes in abundance over time. We will present an overview of this modelling framework and how it integrates sighting locations, survey effort, individual identifications, and environmental data using aerial surveys in the southeastern US as a case example.
Integrating Identification and Sightings data with spatial capture-recapture models

Timothy Gowan and Nathan Crum

November 2019

NARWC Annual Meeting
• **Abundance** estimates critical for assessments of **population status** and **risk**

• Understanding processes that drive its variation across **space** and **time** needed to project consequences of management actions

• Can’t count all whales, need estimates
Capture-recapture models

- Recaptures of identifiable individuals to estimate abundance
- Extensions to model variation across time: recruitment/survival\(^1\), arrival/residency\(^2\)

- Ignore *locations* of sightings and survey effort
 - No inference on spatial distribution
 - Area for estimate not defined
 - Ignore capture heterogeneity due to location of individuals relative to survey effort

\(^1\)Pace et al. 2017
\(^2\)Krzystan et al. 2018
Distance sampling

• Considers location of animals relative to survey effort
• Extensions to model variation across space

• Ignore identifications of individuals
 • Same individual may be sighted multiple times
 • Require detection on line to be 100%
 • Or ancillary data (tagging, double-observer surveys)
 • No inference on population dynamics (movement, survival)

3Roberts et al. 2016
Spatial capture-recapture models

• Account for:
 • Spatial variation in density
 • Movement of individuals
 • Heterogeneity in capture probabilities
Density}_g = e^{(\beta_0 + \beta_1 sst_g + \beta_2 sst_g^2 + \beta_3 depth_g + \beta_4 depth_g^2)}

Abundance}_g = \text{Density}_g \times \text{Area}_g

\text{Abundance}_\text{total} = \sum_{g=1}^{\mathcal{G}} \text{Abundance}_g
\[
\pi_g = \frac{\text{Abundance}_g}{\text{Abundance}_{total}}
\]

\[
s \sim \text{Multinomial}(\text{Abundance}_{total}, \pi_1, \pi_2, \ldots, \pi_G)
\]
\[
\mu_{i,g} = \frac{e^{-\alpha \text{dist}_{gs_i} + \beta_1 \text{sst}_g + \beta_2 \text{sst}^2_g + \beta_3 \text{depth}_g + \beta_4 \text{depth}^2_g}}{\sum_{g=1}^{G} \mu_{i,g}}
\]

\[U_i \sim \text{Multinomial}(T, \mu_{i,1}, \mu_{i,2}, \ldots, \mu_{i,G})\]
\[U_{i,t,x} \sim \text{Uniform}(- \frac{\text{side}}{2}, \frac{\text{side}}{2}) \]

\[U_{i,t,y} \sim \text{Uniform}(- \frac{\text{side}}{2}, \frac{\text{side}}{2}) \]
\[p_{i,t} = p_0 e^{\left(-\frac{1}{2\sigma^2} \text{dist}_{i,t}^2\right)} \]

\[y_{i,t} \sim \text{Bernoulli}(p_{i,t}) \]
Detected (yes/no)

<table>
<thead>
<tr>
<th>CatalogID</th>
<th>16-Jan</th>
<th>18-Jan</th>
<th>19-Jan</th>
<th>20-Jan</th>
<th>22-Jan</th>
</tr>
</thead>
<tbody>
<tr>
<td>3123</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2614</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3790</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3260</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Longitude

<table>
<thead>
<tr>
<th>CatalogID</th>
<th>16-Jan</th>
<th>18-Jan</th>
<th>19-Jan</th>
<th>20-Jan</th>
<th>22-Jan</th>
</tr>
</thead>
<tbody>
<tr>
<td>3123</td>
<td>-81.321</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2614</td>
<td>-81.302</td>
<td>NA</td>
<td>-81.306</td>
<td>-81.200</td>
<td>NA</td>
</tr>
<tr>
<td>3790</td>
<td>NA</td>
<td>-81.133</td>
<td>-80.970</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3260</td>
<td>NA</td>
<td>-80.926</td>
<td>NA</td>
<td>-81.200</td>
<td>NA</td>
</tr>
</tbody>
</table>

Latitude

<table>
<thead>
<tr>
<th>CatalogID</th>
<th>16-Jan</th>
<th>18-Jan</th>
<th>19-Jan</th>
<th>20-Jan</th>
<th>22-Jan</th>
</tr>
</thead>
<tbody>
<tr>
<td>3123</td>
<td>30.573</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2614</td>
<td>30.618</td>
<td>NA</td>
<td>30.638</td>
<td>30.534</td>
<td>NA</td>
</tr>
<tr>
<td>3790</td>
<td>NA</td>
<td>30.675</td>
<td>30.970</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3260</td>
<td>NA</td>
<td>31.176</td>
<td>NA</td>
<td>30.534</td>
<td>NA</td>
</tr>
</tbody>
</table>
true, simulating value vs. model posterior estimate
Future Work

• Different detection functions for different platforms
• Different detection/movement for calving females
• Effect of group size on detection
 • What influences group size?
• Extend to open model
 • Number/location of activity centers in area varies over time
 • Tradeoff between number of recaptures and closure assumption
• Coast-wide analysis
 • Spatial/temporal resolution vs. computation time
 • Movement processes within region vs. between regions
 • Different habitat covariates in different regions
 • Extrapolation depends on habitat covariates
Acknowledgements

• Jeff Hostetler, Julien Martin

• NOAA Fisheries
• Save the Manatee Trust Fund