Pedigree-Informed Estimates of Abundance and Trends for the North Atlantic Right Whale

Timothy R. Frasier, Kayla Fitzgerald, Philip K. Hamilton, Moira W. Brown, Scott D.
Kraus, Bradley N. White

How Many North Atlantic Right Whales Are There?

- How "complete" is the photo-identification catalogue?
- How well do we understand distribution, movement patterns, and everything else?

How many individuals are not photo-identified?

How many individuals are not photo-identified?

Not enough to change the big picture

Don't
Know

Potentially
a lot

1. "Irregular whales" described in Hamilton et al. (2007) ${ }^{1}$
2. Paternity analyses from Frasier et al. (2007) ${ }^{2}$
3. Hamilton et al. (2007) p. 75-104 In: The Urban Whale (Kraus SD, Rolland RM, eds.) Harvard University Press.
4. Frasier et al. (2007) Molecular Ecology 16: 5277-5293.

Ecology and Evolution

Using pedigree reconstruction to estimate population size: genotypes are more than individually unique marks

Scott Creel ${ }^{1,2}$ \& Elias Rosenblatt ${ }^{1,2}$
${ }^{1}$ Department of Ecology, Montana State University, Bozeman, Montana, 59717
${ }^{2}$ Zambian Carnivore Programme, Box 80, Mfuwe, Eastern Province, Zambia

$$
\widehat{N}=N_{s}+N_{i n}+N_{i v}
$$

$$
\widehat{N}=N_{s}+N_{i n}+N_{i v}
$$

Number of individuals sampled

- Just a count

$$
\widehat{N}=N_{s}+N_{i n}+N_{i v}
$$

Number of individuals inferred

- Based on pedigree data
- Also a count

Infer 1 male? Not so simple

Calves without sampled fathers (suppose $n=7$)

- DadShare by Bill Amos
- How related are they?
- How related would we expect them to be if:
- Fathered by 7 males?
- Fathered by 6 males?
- etc?

$$
\widehat{N}=N_{s}+N_{i n}+N_{i v}
$$

Number of individuals inferred

- Based on pedigree data
- Also a count
- Can be used to infer both males and females

$$
\widehat{N}=N_{s}+N_{i n}+N_{i v}
$$

Number of individuals that are invisible to the pedigree analyses

- Where things get interesting!

1. Non-sampled non-breeders ($N_{n s n b}$)

- Adults that aren't sampled and haven't bred
- Juveniles and calves that aren't sampled

2. Breeders who are not sampled and not inferred ($N_{b n s n i}$)

$$
\widehat{N}=N_{s}+N_{i n}+N_{i v}
$$

Number of individuals that are invisible to the pedigree analyses

- Where things get interesting!

1. Non-sampled non-breeders ($N_{n s n b}$)

- Adults that aren't sampled and haven't bred
- Juveniles and calves that aren't sampled

2. Breeders who are not sampled and not inferred ($N_{b n s n i}$)

- Require estimating:
- Probability of being sampled $\left(P_{\text {sampled }}\right)$....... Bayesian estimation
- Probability of being a breeder ($P_{\text {breeder }}$)

Enough already, what about right whales?

Abundance

Probability of Being Sampled

Probability of Being a Breeder

Abundance

Probability of Being Sampled

Probability of Being a Breeder

Interpretation

1. A valuable tool for "checking in" on the photo-ID data
a. A fairly independent method of abundance estimation
b. Pedigree estimates slightly lower than photo-ID

- Seems OK:
- Presumed alive an over-estimate
- Model of Pace et al. does it too!!

Interpretation

2. Does not appear to be a large number of "missing" whales

Not enough to change the big picture

Don't
Know
Potentially a lot

Interpretation

3. Great way to assess \& monitor patterns of reproductive success
a. Peak in mid-2000s was similar to 1980s
b. Reproduction, on a per-whale basis, declining

Thank you!

- North Atlantic Right Whale Consortium
- All sample collectors and collaborators!!!!!!
- Thanks for your help, persistence, and patience

Lisa Conger $=$ CITES ninja $!$

Phil Hamilton, Brenna Frasier, \& Lisa Conger $=$ Keeping samples \& info organized

Nguyen Nguyen - laboratory assistance

1. Non-sampled non-breeders $\left(N_{n s n b}\right)$

$$
P_{\text {sampled }}=\frac{B_{s}}{B_{s}+N_{i n}} \quad P_{\text {breeder }}=\frac{B_{s}+N_{i n}}{N_{s}}
$$

1. Non-sampled non-breeders $\left(N_{n s n b}\right)$

- A fair amount of uncertainty here
- Account for this via Bayesian estimation with Stan
- Logistic regression

$$
\begin{aligned}
P_{\text {not-sampled }} & =1-P_{\text {sampled }} \\
P_{\text {not-breeder }} & =1-P_{\text {breeder }}
\end{aligned}
$$

1. Non-sampled non-breeders $\left(N_{n s n b}\right)$

$$
\begin{aligned}
& \hat{N}_{\text {not-sampled }}=\frac{N_{s}}{P_{\text {sampled }}}-N_{s} \\
& \hat{N}_{\text {nsnb }}=\hat{N}_{\text {not-sampled }} \times P_{\text {not-breeder }}
\end{aligned}
$$

2. Breeders who are not sampled and not inferred ($N_{b n s n i}$)

$$
\begin{aligned}
& \hat{N}_{\text {bns }}=\hat{N}_{\text {not-sampled }} \times P_{\text {breeder }} \\
& \hat{N}_{b n s n i}=\hat{N}_{b n s}-N_{i n}
\end{aligned}
$$

$$
\widehat{N}=N_{s}+N_{i n}+N_{i v}
$$

Number of individuals that are invisible to the pedigree analyses

- Where things get interesting!

1. Non-sampled non-breeders ($N_{n s n b}$)

- Adults that aren't sampled and haven't bred
- Juveniles and calves that aren't sampled

2. Breeders who are not sampled and not inferred ($N_{b n s n i}$)
